手机浏览器扫描二维码访问
突如其来的灵感让徐川一口闷掉了手里的感冒药,杯中温热原本微微有些泛苦的药水此刻变得甘甜无比,仿佛一杯蜂蜜水一样,沁人心脾。
手中的杯子放下,他从抽屉中摸出一叠纸笔,平铺在桌面上演算起来。
Weyl-Berry猜想的弱化形式他已经搞定在了,但并不代表Weyl-Berry猜想的证明难度就变简单了。
这就像是的弱哥德巴赫猜想在13年的五月份就被两名数学家搞定了,但时至今天已经是15年的十一月份了,时间已经过去了整整两年多,可哥德巴赫猜想被完整的证明依旧遥遥无期一样。
徐川也并不觉得自己能在证明Weyl-Berry猜想的弱化形式后短时间内能搞定Weyl-Berry猜想。
哪怕有上辈子的一些数学知识打底,哪怕他已经搞定了弱Weyl-Berry猜想,但他也不觉得自己能在一两年的时间内就解决掉完整的Weyl-Berry猜想。
可数学这东西,有时候是真的依赖灵感。
灵感不够的时候,就像是写小说断更一样,便秘一个月都更不出来一章。
灵感来了,在基础知识足够扎实的时候,你很快就能解决掉一个又一个的问题。
手中的黑色签字笔在洁白的A4纸上不断的勾勒出一個个的字符。
“.....从Weyl定理3.2出发,构造一个有界且连通的开集Ω,设Ω为满足以上条件(C)的R2(n≥2)中有界连通区域,其边界具有内Minkowski维数δ∈(n-1,n),则有λ→+∞,且有:
N(λ)-?(λ)≤-Cn,δ(λπ2)δ2.....Pn(t+o(1))+o(δ?λπ2)
这里的Pn(t)是3.2项定理的函数表达式。
证明:若在开方块Qκξ的各个边的切口(或洞)处加Neuman边界条件,而其他地方仍保持优Dirichlet边界条件,这时对应的计数函数记为N(λ,Qκξ)。
于是我们有:N(λ)-?(λ)≤∑∞k=0#......
在灵感得来初期,徐川下笔如有神助一般,很快就将Weyl-Berry猜想的分形维数和分形测度的谱不变量定义到了一个高纬边界上。
然后......
然后他就不负众望的卡住了。
高斯的《算术研究》原本教会了他通过域的扩张来对分圆方程的辅助方程求分解,也让他想到了利用狄利克雷函数域来转换拉普拉斯算子和拉普拉斯双曲型方程。
但是,他没怎么深入的学习过域的扩张以及如何将函数转换成子群并与中间域和合集建立起来联系,上辈子没有学习这块的知识,这辈子上大学还不到一学期,还没来得及学这些。
所以现在他是空有思路,脑海中的基础数学却撑不起来这条思路的验算。
.......
盯着写满了算式的稿纸看了半天,最终徐川还是将手中的签字笔丢到了桌上,身体往后一靠,盯着有些灰白的房顶发呆。
这种有解题思路,但基础能力却无法完成验算的情况,大概也就会出现在他这种怪胎身上了吧。
毕竟正常来说,基础能力不够的话,根本就提不出什么解题思路。
但他不同,上辈子在普林斯顿的学习虽然主要集中在物理方面,可普林斯顿终究是数学胜地。
日月积累下来终究会接触到不少的数学,只是说这些数学知识都只是皮毛,没有深入精髓。
这也导致了上辈子和这辈子他都遇到了同样的问题,就是在针对某些数学问题进行研究的时候,能依赖极为广泛的见识提出一些想法和见解或者解题思路,但是脑海中却没对应的基础知识,进而无法做到完善。
比如上辈子的可控核聚变中的湍流问题,这辈子的Weyl-Berry猜想,都是。
林江今天要结婚了。但是新娘长什么样子他都不知道他站在酒店门口,犹豫着要不要进去赴婚约,最后心一横,决定遵照爷爷遗命,以报顾家老头救命之恩。...
作者嵩山坳的经典小说大时代1950最新章节全文阅读服务本站更新及时无弹窗广告小说重生在日本,还是1950年?上帝啊,你是哪根线搭错了?神啊,救救我吧!...
披着爽文皮的瞎瘠薄扯淡科幻文 在丧尸末世到来时发现自己有一艘宇宙飞船,是一种什么样的体验? 严昭著谢邀。日天日地的体验。 如何跟第一次见面就打起来,之后时常打架并且三观不合的朋友相处? 沈用晦没有什么是上床解决不了的,一次不行就再上一次。 前三章是空章,删不掉所以只能放着,不影响阅读,第四章是真正的第一章。...
爸爸跳楼自杀,妈妈摔伤成了植物人,钟浈被迫筹集巨额医疗费,与陌生男人一夜沉沦,并且成功怀孕,十月怀胎后生下一对龙凤胎,谁知混乱中她又再次阵痛!原来肚子里居然还有个宝宝存在!她大喜过望,带着仅余的小儿子远离这座城市,三年才敢再回归,万万没想到,缘分的帷幕又一次拉开...
夏倾歌无意穿越到了唐燕国,身份还是个废物嫡女,没关系,她空间在手,经商无敌,才艺精湛,在宅子中,她是小霸王,欺压庶妹,打倒庶母,在外,她同样是万千男人肖想对象,心机叵测的皇帝喜欢他,长安城大名鼎鼎风光霁月的俏郎君也钟情于他,就连杀伐果断不近女色的摄政王也掉进了她的坑里,可最后发现,她竟然也掉进了摄政王的坑里。...